Compatibilitas Simplicitas enim Sequentialis Logica
Reapse multae consequentiae logicae definiri possunt cum tabula status-transitu- latione cum multis insuetis/none- riis status transitionibus. Eas dicamus partim definitas tabellam transitum civitatis.
Opus est theoriam graphi ad simpliciorem reddendam tabulam status-transitu- dinis partim definitam. Hic omittitur explicatio graphi theoriae. Nihilominus simplex est algorithmus inquisitionis inveniendae 'clique' status-transitu- tionis.
[table]=StateTransition()
{
transitions
{
1: [1] -> 1/1'b0, [2] -> 4/1'b0, /* */ [4] -> 2/1'b1;
2: [1] -> 3/1'b1, /* */ /* */ [4] -> 2/1'b1;
3: [1] -> 3/1'b1, [2] -> 4/1'b0, /* */ [4] -> 2/1'b1;
4: [1] -> 1/1'b0, [2] -> 4/1'b0 /* */ /* */;
}
}
[simtable]=Simplification.Compatibility(table);
Print("result:");
Print(simtable);
/*
Eventus sit :
[table]=StateTransition()
{
transitions
{
1: [1] -> 1/1'b0, [2] -> 4/1'b0, [4] -> 2/1'b1;
2: [1] -> 3/1'b1, [4] -> 2/1'b1;
3: [1] -> 3/1'b1, [2] -> 4/1'b0, [4] -> 2/1'b1;
4: [1] -> 1/1'b0, [2] -> 4/1'b0 ;
}
simplification
{
tabletype = "incompletely-defined" ;
algorithm = "compatibility" ;
grouping
{
1:1,4;
2:2,3;
}
transitions
{
1: [1] -> 1/1'b0, [2] -> 1/1'b0, [4] -> 2/1'b1;
2: [1] -> 2/1'b1, [2] -> 1/1'b0, [4] -> 2/1'b1;
}
}
}
*/
Advanced IsNegativeUnateFunctionTo IsParityFunction IsSelfDualFunction BinaryNumberToString GrayCode StringToBinaryNumber binaryioset ToShannonTree ToVariableInvertedFunction ToXORP DigitalSystem Email Eq Equiv RadixToIndex real() SOP To2LayerAndOr To2LayerAndXor ShortestInputsForTransition Assign InputVariables string GetSubTable ComputeDONTCARE CreateDummyLogicFunction var() XORP Zero
The website is simply translated by using the Google Translate. Please inform us if you find the wrong/funny/weird translation.